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In a recent similar type study, the treatment was for 10 min per day for 14 days at 1W/cm2 at a frequency 
of 1MHz (the ultrasonic device was not disclosed). This study suggested that LIPUS has therapeutic 
potential for the treatment of mandibular condylar cartilage defects of 2mm in diameter. In [12], normal 
and osteoarthritis chondrocytes in culture dishes were treated with 3MHz ultrasound for 6 days, 20 min per 
day at intensities of 20, 30, 40 and 50mW/cm2. In [1], a frequency of 1MHz, with an intensity of 0.1 W/
cm2 was used on human osteoarthritic knee showed no significant difference in the treatment effect. In [4] 
1MHz with a peak intensity of 1W/cm2 at a 20% duty cycle was applied for cartilage repair in humans. In 
this study it is mentioned that there is limited understanding about the important factors that may influence 
the effects of the treatment, such as dose, intensity, mode, or application techniques. A previous meta-
analysis study [5] was inconclusive. Human chondrocytes and explants were exposed to LIPUS (30mW/
cm2; 20min/day, 6 days) in [2]. Li et al [3] used 3MHz ultrasound with 20% duty cycle and 30mW/cm2

Five years ago a question was raised. Is it possible for Low-intensity pulsed ultrasound treatment (LIPUS) to 
repair articular cartilage? A daily 20-minute treatment for 3 months was given to surgically created cartilage 
defects of 5mm in diameter on the right side distal femoral condyle of rabbits. The ultrasonic device used 
was an Exogen low-intensity pulsed ultrasound device (Smith & Nephew Inc, Memphis, TN, USA) which 
provided a peak intensity of 30mW/cm2 at a frequency of 1.5MHz. After treatment, the cartilage defects 
of the LIPUS-treated group were covered by proliferative tissue, where the non-treated were not. The study 
concluded that there was no significant therapeutic effect.
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acoustic intensity for 20 min a day, 5days a week for a total of 6weeks. This study concluded that low intensity 
ultrasound could improve cartilage degeneration. Chondrocytes in culture dish treated with LIPUS for 
20 min at 3.0MHz frequency and 60mW/cm2 intensity showed increased gene expressions [8]. A review 
article state that LIPUS increases proliferation in articular cartilage [7] and state that the desired biological 
effect depends on the type of signal used. Oyonarte et al concluded that LIPUS (30mW/cm2 1MHz, 5 
times a week over a 26-day period) may alter the histology of cartilage when treated for 10 or 20 min and 
the sensitivity of condylar tissues to LIPUS stimulation differs between the anterior and posterior regions 
of the condyle, and will also depend on the duration of daily stimulation. Also Sahu et al [10] concluded 
that continuous ultrasound at 5MHz (intensity < 20mWcm-2) for 20 min 4 times per day for 28 days 
improved cartilage repair and also claim that the bio-effects are frequency dependent. Cyclic tensile strain 
has shown by Yank et al to have no therapeutic effects on normal articular cartilage and chondrocytes [15] 
Xia et al exposed to LIPUS New Zealand White rabbits with osteoarthritis (3MHz, 20% duty cycle,). 
They concluded that LIPUS protects cartilage from damage in early-stage osteoarthritis. Uddin et al [11] 
concludes that LIPUS (20min per day at 30mW/cm2, 1MHz, 40mW/cm2, 20 min/day 6d/wk for 5 weeks) 
has potential therapeutic effects in preventing cartilage degradation and treating osteoarthritis. Zhou et al 
also concluded that LIPUS (1MHz, 1W/cm2, 10 min, for 14 days for once a day) decreased the severity of 
cartilage injury [16]. Furthermore, in real life, when walking pressures in a joint are in the range from 3 to 
10MPa with a frequency around 1Hz [6].

As it can be noticed, the majority of the published research shows that LIPUS has some effect on articular 
cartilage. But why some studies come to different conclusions? Is it really because the size of the surgically 
induced defects or the treatment protocol? Or is it because the type of the LIPUS device, its frequency, its 
intensity, all the above, or something else? Ultrasound research in Medicine and Biology suffers from the 
fact that are too many parameters involved. It is clear that if we want LIPUS to become a clinical practice, 
we all have to put some more effort on producing standardized and repeatable research with evidence on 
how to design treatment protocols for LIPUS.
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